天才数学家—高斯
【慕联导读】
18世纪下半叶的欧洲,降临了一位千年难遇的超级天才,这位天才的全名就叫作约翰·卡尔·弗里德里希·高斯。此时的欧洲最西端,轰轰烈烈的工业革命已经开始。蒸汽机的发明,让整个人类文明的进化速度,提升到了指数级。而高斯的诞生,同样让人类的数学文明跨进了一大步。
高斯是德国著名数学家(1777~1855),出生于一个比较贫困的家庭,父母均没有受过正规教育,父亲安于现状,只希望高斯将来长大后能有一份简单的养家糊口的工作,而母亲虽是个没有文化的家庭主妇,但目光长远,对高斯要求严格。并尊重孩子的兴趣,希望高斯能有所成就。
高斯在很小的时候就有过人的才华,在他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。父亲念出钱数,准备写下时,身边传来微小的声音:“爸爸!算错了,钱应该是这样”。父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎么样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。
高斯在7岁时进了小学,有一天,算术老师要求全班同学算出以下的算式:1+2+3+4+……+98+99+100=?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其它孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。
原来:1+100=101,2+99=101,3+98=101……50+51=101
前后两项两两相加,就成了50对和都是101的配对了即101×50=5050。
按:今用公式表示:1+2+……+n
高斯的数学老师对学生的态度其实并不好,但当他发现神童高斯的时候心里很是欣慰,而且觉得自己懂的数学不多,教不了高斯更多东西了。并自掏腰包为高斯购买数学书籍。
高斯在十一岁的时候就发现了二项式定理(x+y)n的一般情形,这里n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。
由于高斯有过人的天赋,后来被费迪南公爵发现了,并决定给他经济救援,让他有机会受高深教育,在费迪南公爵的帮助下,高斯进入了一所十五岁的高斯进入一间著名的学院(程度相当于高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。还不到十八岁的高斯发现了:一个正n边形可以用直尺和圆规画出当且仅当n是底下两种形式之一:k=0,1,2……十七世纪时法国数学家费马(Fermat)以为公式在k=0,1,2,3,……给出素数。(事实上,目前只确定F0,F1,F2,F4是质数,F5不是)。
后来,数学家高斯还用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那么的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。
1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为“代数基本定理”。
来源:互联网 编辑:徐慧芳