中国古代数学的全盛时期
【慕联导读】
本文讲述中国古代数学的相关内容,主要是介绍了中国古代数学的发展和中国古代数学的一些重要成就。特别指出,中国古代数学在宋元时期达到鼎盛阶段。希望同学通过对中国古代数学的了解,可以加深对数学的学习兴趣。
中国古代数学的全盛时期
中国是世界四大文明古国之一。数学是中国古代科学中的一门重要学科,其发展源远流长,成就辉煌。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。根据它本身的发展,可以分为先秦萌芽时期、汉唐奠基时期、宋元全盛时期、西学输入时期、近现代数学发展时期5个阶段。
我们的祖先在从野蛮走向文明的漫长历程中,逐渐认识了数与形的概念。出土的新石器时代的陶器大多为圆形或其他规则形状,陶器上有各种几何图案,通常还有三个着地点,这些都是几何知识的萌芽。春秋时期,随着铁器的出现、生产力的提高,中国开始了由奴隶制度向封建制度的过渡。新的生产关系促进了科学技术的发展与进步。在春秋末年甚至之前,人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。人们已谙熟九九乘法表、整数四则运算,并使用了分数。
战国时期,各诸侯国相继完成了向封建制度的过渡。当时的数学知识分成了方田、粟米、差分、少广、商功、均输、方程、赢不足、旁要9个部分,称为“九数”,九数确立了《九章算术》(简称《九章》)的基本框架。
西汉政府休养生息,社会生产力得到恢复、发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。同时,人们注重对先秦文化典籍的收集、整理。作为数学新发展及先秦典籍抢救工作的结晶,便是《九章》的成书。《九章》是中国最重要的数学经典,它之于中国和东方数学,大体相当于《几何原本》之于希腊和欧洲数学。在世界古代数学史上,《九章》与《几何原本》像两颗璀璨的明珠,相互辉映。
《九章》之后,中国的数学著述基本上采取两种方式:一是为《九章》作注,二是以《九章》为楷模编纂新的著作。经过两汉社会经济和科学技术的大发展,到魏晋时期,中国封建社会进入一个新的阶段。数学家重视理论研究,力图把自先秦到两汉时期积累起来的数学知识建立在必然的、可靠的基础之上。刘徽和他的《九章注》便是这个时代造就的最伟大的数学家和最杰出的数学著作。
经过盛唐的大发展,唐中叶之后,生产关系和社会各方面逐渐产生了新的实质性变革。到10世纪下半叶,赵匡胤建立了宋朝,中国封建社会进入了另一个新的阶段,土地所有制由国有为主变为私有为主,租佃农民取代了魏唐时具有农奴身份的部曲、徒附,农业、手工业、商业和科学技术得到更大发展。
中国古代四大发明,有三项在这一时期得到了长足发展——印刷术广泛应用活字印刷,火药用于战争,指南针用于航海。北宋秘书省于元丰七年(公元1084年)首次刊刻了《九章》等十部算经(时《夏侯阳算经》《缀术》已失传,因8世纪下半叶一部韩延《算术》开头有“夏侯阳曰”云云而误认为是前者而刻入,后者只好付之阙如),是世界上首次出现的印刷本数学著作。后来南宋数学家鲍公式之翻刻了这些刻本,有《九章》(半部)《周髀算经》《孙子算经》《五曹算经》《张丘建算经》五种及《数术记遗》等孤本,流传至今,是目前世界上传世最早的印刷本数学著作。在这一时期,数学研究的很多领域都达到了古代数学的高峰,其中一些成就也是当时世界数学的高峰。宋代在数学研究方面取得了诸多重大成就,如“贾宪三角”与开方作法本源图、增乘开方法、大衍求一术、隙积术、垛积术、会圆术、纵横图、筹算和珠算等。宋元数学家贾宪、李冶、杨辉、朱世杰的著作,大多在成书后不久即刊刻。数学著作借助印刷术得以空前广泛地流传,对传播普及数学知识意义尤为深远。
中国史学界公认,到了宋元时期,中国古代数学达到了巅峰。在古代,数学叫做算术,又称算学、术、算、九九、九算,别称很多。术作为一门单独的学问,在先秦时就有了,古代六艺中的“礼”“乐”“射”“艺”“书”“术”中最后一个“术”指的就是数学。
第一次提到数学这个词也是在宋代。南宋秦九韶提出“物生而后有象,象而后有滋,滋而后有数”,是说先有物才有象,象的繁衍滋生才有了数,这也算是数学的第一个定义了。宋代对数学家极为重视。历史上第一次对数学家的追封是在宋徽宗时期,一次追封了70位数学家,供后世供奉。官方的重视和支持也是数学繁荣发展的原因之一。此外,宋代的任官制度也是当时数学繁荣昌盛的另一个因素。宋代任官制度有官、职、差遣三个体系。官,官名用于表示官位、俸禄高低;职,是官员在三馆、密阁中所担任的职务,称为“馆职”;差遣,指派遣。部分士大夫只有官职,而没有实际差遣,空拿朝廷俸禄,还拥有博物情怀,这也是当时科技文化发展的原因之一。
宋代数学与其之前和之后的数学研究相比,较为突出的地方就是注重抽象思维,而这正是宋代数学受理学思想影响的结果。当时,很多数学家本身就是士大夫、官员,对数学的抽象思维受到理学启发。理学讲究“格物致知,物格而后知至”,认为格物致知是一切的基础。此外,当时的数学教育主要分为官学、私学和家学。官学由朝廷直接举办和管辖,定额210人。专职教授算学的人称为算学博士,相当于现在的数学老师,内算外算均有教授,官府研究算学主要运用于天文历法的推演计算。当时,算学往往与天文苑、司天监等机构融合起来。在私学方面,宋代各地书院都开设了算学科目。在家学中,最具代表性的人物是苗训与其子苗守信。苗训,善天文占候术,以谋略见长,曾预言赵匡胤陈桥兵变。